
1.1 Limitations of g++

• Limitations on input source code: 240 nesting levels with the parser stacksize (YYS-
TACKSIZE) set to 500 (the default), and requires around 16.4k swap space per nesting
level. The parser needs about 2.09 * number of nesting levels worth of stackspace.

• I suspect there are other uses of pushdecl class level that do not call
set identifier type value in tandem with the call to pushdecl class level. It would
seem to be an omission.

• Access checking is unimplemented for nested types.

• volatile is not implemented in general.

• Pointers to members are only minimally supported, and there are places where the
grammar doesn’t even properly accept them yet.

• this will be wrong in virtual members functions defined in a virtual base class, when
they are overridden in a derived class, when called via a non-left most object.

An example would be:

extern "C" int printf(const char*, ...);

struct A { virtual void f() { } };

struct B : virtual A { int b; B() : b(0) {} void f() { b++; } };

struct C : B {};

struct D : B {};

struct E : C, D {};

int main()

{

E e;

C& c = e; D& d = e;

c.f(); d.f();

printf ("C::b = %d, D::b = %d\n", e.C::b, e.D::b);

return 0;

}

This will print out 2, 0, instead of 1,1.

1.2 Routines

This section describes some of the routines used in the C++ front-end.

build_vtable and prepare_fresh_vtable is used only within the cp-class.c file, and
only in finish_struct and modify_vtable_entries.

build_vtable, prepare_fresh_vtable, and finish_struct are the only routines that
set DECL_VPARENT.

finish_struct can steal the virtual function table from parents, this prohibits re-
lated vslot from working. When finish struct steals, we know that

get_binfo (DECL_FIELD_CONTEXT (CLASSTYPE_VFIELD (t)), t, 0)

will get the related binfo.

layout_basetypes does something with the VIRTUALS.

Supposedly (according to Tiemann) most of the breadth first searching done, like in
get_base_distance and in get_binfo was not because of any design decision. I have since

found out the at least one part of the compiler needs the notion of depth first binfo searching,
I am going to try and convert the whole thing, it should just work. The term left-most
refers to the depth first left-most node. It uses MAIN_VARIANT == type as the condition
to get left-most, because the things that have BINFO_OFFSETs of zero are shared and will
have themselves as their own MAIN_VARIANTs. The non-shared right ones, are copies of the
left-most one, hence if it is its own MAIN_VARIENT, we know it IS a left-most one, if it is
not, it is a non-left-most one.

get_base_distance’s path and distance matters in its use in:

• prepare_fresh_vtable (the code is probably wrong)

• init_vfields Depends upon distance probably in a safe way, build offset ref might use
partial paths to do further lookups, hack identifier is probably not properly checking
access.

• get_first_matching_virtual probably should check for get_base_distance return-
ing -2.

• resolve_offset_ref should be called in a more deterministic manner. Right now,
it is called in some random contexts, like for arguments at build_method_call

time, default_conversion time, convert_arguments time, build_unary_op time,
build_c_cast time, build_modify_expr time, convert_for_assignment time, and
convert_for_initialization time.

But, there are still more contexts it needs to be called in, one was the ever simple:

if (obj.*pmi != 7)

...

Seems that the problems were due to the fact that TREE_TYPE of the OFFSET_REF was
not a OFFSET_TYPE, but rather the type of the referent (like INTEGER_TYPE). This
problem was fixed by changing default_conversion to check TREE_CODE (x), instead
of only checking TREE_CODE (TREE_TYPE (x)) to see if it was OFFSET_TYPE.

1.3 Implementation Specifics

• Explicit Initialization

The global list current_member_init_list contains the list of mem-initializers spec-
ified in a constructor declaration. For example:

foo::foo() : a(1), b(2) {}

will initialize ‘a’ with 1 and ‘b’ with 2. expand_member_init places each initialization
(a with 1) on the global list. Then, when the fndecl is being processed, emit_base_init
runs down the list, initializing them. It used to be the case that g++ first ran down
current_member_init_list, then ran down the list of members initializing the ones
that weren’t explicitly initialized. Things were rewritten to perform the initializations
in order of declaration in the class. So, for the above example, ‘a’ and ‘b’ will be
initialized in the order that they were declared:

class foo { public: int b; int a; foo (); };

Thus, ‘b’ will be initialized with 2 first, then ‘a’ will be initialized with 1, regardless of
how they’re listed in the mem-initializer.

• Argument Matching

In early 1993, the argument matching scheme in gnu C++ changed significantly. The
original code was completely replaced with a new method that will, hopefully, be easier
to understand and make fixing specific cases much easier.

The ‘-fansi-overloading’ option is used to enable the new code; at some point in
the future, it will become the default behavior of the compiler.

The file cp-call.c contains all of the new work, in the functions rank_for_overload,
compute_harshness, compute_conversion_costs, and ideal_candidate.

Instead of using obscure numerical values, the quality of an argument match is now
represented by clear, individual codes. The new data structure struct harshness (it
used to be an unsigned number) contains:

a. the ‘code’ field, to signify what was involved in matching two arguments;

b. the ‘distance’ field, used in situations where inheritance decides which function
should be called (one is “closer” than another);

c. and the ‘int_penalty’ field, used by some codes as a tie-breaker.

The ‘code’ field is a number with a given bit set for each type of code, OR’d together.
The new codes are:

• EVIL_CODE The argument was not a permissible match.

• CONST_CODE Currently, this is only used by compute_conversion_costs, to distin-
guish when a non-const member function is called from a const member function.

• ELLIPSIS_CODE A match against an ellipsis ‘...’ is considered worse than all
others.

• USER_CODE Used for a match involving a user-defined conversion.

• STD_CODE A match involving a standard conversion.

• PROMO_CODE A match involving an integral promotion. For these, the int_penalty
field is used to handle the ARM’s rule (XXX cite) that a smaller unsigned type
should promote to a int, not to an unsigned int.

• QUAL_CODE Used to mark use of qualifiers like const and volatile.

• TRIVIAL_CODE Used for trivial conversions. The ‘int_penalty’ field is used by
convert_harshness to communicate further penalty information back to build_

overload_call_real when deciding which function should be call.

The functions convert_to_aggr and build_method_call use compute_conversion_

costs to rate each argument’s suitability for a given candidate function (that’s how
we get the list of candidates for ideal_candidate).

1.4 Glossary

binfo The main data structure in the compiler used to represent the inheritance rela-
tionships between classes. The data in the binfo can be accessed by the BINFO
accessor macros.

vtable
virtual function table

The virtual function table holds information used in virtual function dispatch-
ing. In the compiler, they are usually referred to as vtables, or vtbls. The first

index is not used in the normal way, I believe it is probably used for the virtual
destructor.

vfield

vfields can be thought of as the base information needed to build vtables. For
every vtable that exists for a class, there is a vfield. See also vtable and virtual
function table pointer. When a type is used as a base class to another type, the
virtual function table for the derived class can be based upon the vtable for the
base class, just extended to include the additional virtual methods declared in
the derived class. The virtual function table from a virtual base class is never
reused in a derived class. is_normal depends upon this.

virtual function table pointer
These are FIELD_DECLs that are pointer types that point to vtables. See also
vtable and vfield.

1.5 Macros

This section describes some of the macros used on trees. The list should be alphabetical.
Eventually all macros should be documented here. There are some postscript drawings that
can be used to better understnad from of the more complex data structures, contact Mike
Stump (mrs@cygnus.com) for information about them.

BINFO_BASETYPES

A vector of additional binfos for the types inherited by this basetype. The binfos
are fully unshared (except for virtual bases, in which case the binfo structure
is shared).

If this basetype describes type D as inherited in C, and if the basetypes of D
are E anf F, then this vector contains binfos for inheritance of E and F by C.

Has values of:

TREE VECs

BINFO_INHERITANCE_CHAIN

Temporarily used to represent specific inheritances. It usually points to the
binfo associated with the lesser derived type, but it can be reversed by re-
verse path. For example:

Z ZbY least derived

|

Y YbX

|

X Xb most derived

TYPE_BINFO (X) == Xb

BINFO_INHERITANCE_CHAIN (Xb) == YbX

BINFO_INHERITANCE_CHAIN (Yb) == ZbY

BINFO_INHERITANCE_CHAIN (Zb) == 0

Not sure is the above is really true, get base distance has is point towards the
most derived type, opposite from above.

Set by build vbase path, recursive bounded basetype p, get base distance,
lookup field, lookup fnfields, and reverse path.

What things can this be used on:

TREE VECs that are binfos

BINFO_OFFSET

The offset where this basetype appears in its containing type. BINFO OFFSET
slot holds the offset (in bytes) from the base of the complete object to the base
of the part of the object that is allocated on behalf of this ‘type’. This is always
0 except when there is multiple inheritance.

Used on TREE VEC ELTs of the binfos BINFO BASETYPES (...) for exam-
ple.

BINFO_VIRTUALS

A unique list of functions for the virtual function table. See also
TYPE BINFO VIRTUALS.

What things can this be used on:

TREE VECs that are binfos

BINFO_VTABLE

Used to find the VAR DECL that is the virtual function table associated with
this binfo. See also TYPE BINFO VTABLE. To get the virtual function table
pointer, see CLASSTYPE VFIELD.

What things can this be used on:

TREE VECs that are binfos

Has values of:

VAR DECLs that are virtual function tables

BLOCK_SUPERCONTEXT

In the outermost scope of each function, it points to the FUNCTION DECL
node. It aids in better DWARF support of inline functions.

CLASSTYPE_TAGS

CLASSTYPE TAGS is a linked (via TREE CHAIN) list of member classes of
a class. TREE PURPOSE is the name, TREE VALUE is the type (pushclass
scans these and calls pushtag on them.)

finish struct scans these to produce TYPE DECLs to add to the
TYPE FIELDS of the type.

It is expected that name found in the TREE PURPOSE slot is unique, re-
solve scope to name is one such place that depends upon this uniqueness.

CLASSTYPE_METHOD_VEC

The following is true after finish struct has been called (on the class?) but
not before. Before finish struct is called, things are different to some extent.
Contains a TREE VEC of methods of the class. The TREE VEC LENGTH
is the number of differently named methods plus one for the 0th entry.
The 0th entry is always allocated, and reserved for ctors and dtors. If
there are none, TREE VEC ELT(N,0) == NULL TREE. Each entry of the

TREE VEC is a FUNCTION DECL. For each FUNCTION DECL, there
is a DECL CHAIN slot. If the FUNCTION DECL is the last one with a
given name, the DECL CHAIN slot is NULL TREE. Otherwise it is the next
method that has the same name (but a different signature). It would seem
that it is not true that because the DECL CHAIN slot is used in this way,
we cannot call pushdecl to put the method in the global scope (cause that
would overwrite the TREE CHAIN slot), because they use different CHAINs.
finish struct methods setups up one version of the TREE CHAIN slots on the
FUNCTION DECLs.

friends are kept in TREE LISTs, so that there’s no need to use their
TREE CHAIN slot for anything.

Has values of:

TREE VECs

CLASSTYPE_VFIELD

Seems to be in the process of being renamed TYPE VFIELD. Use on types to
get the main virtual function table pointer. To get the virtual function table
use BINFO VTABLE (TYPE BINFO ()).

Has values of:

FIELD DECLs that are virtual function table pointers

What things can this be used on:

RECORD TYPEs

DECL_CLASS_CONTEXT

Identifies the context that the DECL was found in. For virtual function ta-
bles, it points to the type associated with the virtual function table. See also
DECL CONTEXT, DECL FIELD CONTEXT and DECL FCONTEXT.

The difference between this and DECL CONTEXT, is that for virtuals func-
tions like:

struct A

{

virtual int f ();

};

struct B : A

{

int f ();

};

DECL_CONTEXT (A::f) == A

DECL_CLASS_CONTEXT (A::f) == A

DECL_CONTEXT (B::f) == A

DECL_CLASS_CONTEXT (B::f) == B

Has values of:

RECORD TYPEs, or UNION TYPEs

What things can this be used on:

TYPE DECLs, DECLs

DECL_CONTEXT

Identifies the context that the DECL was found in. Can be used on virtual
function tables to find the type associated with the virtual function table,
but since they are FIELD DECLs, DECL FIELD CONTEXT is a better
access method. Internally the same as DECL FIELD CONTEXT, so don’t
us both. See also DECL FIELD CONTEXT, DECL FCONTEXT and
DECL CLASS CONTEXT.

Has values of:

RECORD TYPEs

What things can this be used on:

VAR DECLs that are virtual function tables
DECLs

DECL_FIELD_CONTEXT

Identifies the context that the FIELD DECL was found in. Internally the
same as DECL CONTEXT, so don’t us both. See also DECL CONTEXT,
DECL FCONTEXT and DECL CLASS CONTEXT.

Has values of:

RECORD TYPEs

What things can this be used on:

FIELD DECLs that are virtual function pointers
FIELD DECLs

DECL_NESTED_TYPENAME

Holds the fully qualified type name. Example, Base::Derived.

Has values of:

IDENTIFIER NODEs

What things can this be used on:

TYPE DECLs

DECL_NAME

Has values of:

0 for things that don’t have names
IDENTIFIER NODEs for TYPE DECLs

DECL_IGNORED_P

A bit that can be set to inform the debug information output routines in the
back-end that a certain DECL node should be totally ignored.

Used in cases where it is known that the debugging information will be output
in another file, or where a sub-type is known not to be needed because the
enclosing type is not needed.

A compiler constructed virtual destructor in derived classes that do not
define an exlicit destructor that was defined exlicit in a base class has this bit

set as well. Also used on FUNCTION and PRETTY FUNCTION
to mark they are “compiler generated.” c-decl and c-lex.c both want
DECL IGNORED P set for “internally generated vars,” and “user-invisible
variable.”

Functions built by the C++ front-end such as default destructors, virtual de-
sctructors and default constructors want to be marked that they are compiler
generated, but unsure why.

Currently, it is used in an absolute way in the C++ front-end, as an optimiza-
tion, to tell the debug information output routines to not generate debugging
information that will be output by another separately compiled file.

DECL_VIRTUAL_P

A flag used on FIELD DECLs and VAR DECLs. (Documentation in tree.h is
wrong.) Used in VAR DECLs to indicate that the variable is a vtable. It is
also used in FIELD DECLs for vtable pointers.

What things can this be used on:

FIELD DECLs and VAR DECLs

DECL_VPARENT

Used to point to the parent type of the vtable if there is one, else it is just
the type associated with the vtable. Because of the sharing of virtual function
tables that goes on, this slot is not very useful, and is in fact, not used in the
compiler at all. It can be removed.

What things can this be used on:

VAR DECLs that are virtual function tables

Has values of:

RECORD TYPEs maybe UNION TYPEs

DECL_FCONTEXT

Used to find the first baseclass in which this FIELD DECL is de-
fined. See also DECL CONTEXT, DECL FIELD CONTEXT and
DECL CLASS CONTEXT.

How it is used:

Used when writing out debugging information about vfield and vbase decls.

What things can this be used on:

FIELD DECLs that are virtual function pointers FIELD DECLs

DECL_REFERENCE_SLOT

Used to hold the initialize for the reference.

What things can this be used on:

PARM DECLs and VAR DECLs that have a reference type

DECL_VINDEX

Used for FUNCTION DECLs in two different ways. Before the structure con-
taining the FUNCTION DECL is laid out, DECL VINDEX may point to a
FUNCTION DECL in a base class which is the FUNCTION DECL which this
FUNCTION DECL will replace as a virtual function. When the class is laid

out, this pointer is changed to an INTEGER CST node which is suitable to
find an index into the virtual function table. See get vtable entry as to how
one can find the right index into the virtual function table. The first index 0,
of a virtual function table it not used in the normal way, so the first real index
is 1.

DECL VINDEX may be a TREE LIST, that would seem to be a list of over-
ridden FUNCTION DECLs. add virtual function has code to deal with this
when it uses the variable base fndecl list, but it would seem that somehow, it
is possible for the TREE LIST to pursist until method call, and it should not.

What things can this be used on:

FUNCTION DECLs

DECL_SOURCE_FILE

Identifies what source file a particular declaration was found in.

Has values of:

"<built-in>" on TYPE DECLs to mean the typedef is built in

DECL_SOURCE_LINE

Identifies what source line number in the source file the declaration was found
at.

Has values of:

0 for an undefined label

0 for TYPE DECLs that are internally generated

0 for FUNCTION DECLs for functions generated by the compiler
(not yet, but should be)

0 for “magic” arguments to functions, that the user has no
control over

TREE_USED

Has values of:

0 for unused labels

TREE_ADDRESSABLE

A flag that is set for any type that has a constructor.

TREE_COMPLEXITY

They seem a kludge way to track recursion, poping, and pushing. They only
appear in cp-decl.c and cp-decl2.c, so the are a good candidate for proper fixing,
and removal.

TREE_PRIVATE

Set for FIELD DECLs by finish struct. But not uniformly set.

The following routines do something with PRIVATE access: build method call,
alter access, finish struct methods, finish struct, convert to aggr, CWrite-
LanguageDecl, CWriteLanguageType, CWriteUseObject, compute access,

lookup field, dfs pushdecl, GNU xref member, dbxout type fields,
dbxout type method 1

TREE_PROTECTED

The following routines do something with PROTECTED access:
build method call, alter access, finish struct, convert to aggr, CWrite-
LanguageDecl, CWriteLanguageType, CWriteUseObject, compute access,
lookup field, GNU xref member, dbxout type fields, dbxout type method 1

TYPE_BINFO

Used to get the binfo for the type.

Has values of:

TREE VECs that are binfos

What things can this be used on:

RECORD TYPEs

TYPE_BINFO_BASETYPES

See also BINFO BASETYPES.

TYPE_BINFO_VIRTUALS

A unique list of functions for the virtual function table. See also
BINFO VIRTUALS.

What things can this be used on:

RECORD TYPEs

TYPE_BINFO_VTABLE

Points to the virtual function table associated with the given type. See also
BINFO VTABLE.

What things can this be used on:

RECORD TYPEs

Has values of:

VAR DECLs that are virtual function tables

TYPE_NAME

Names the type.

Has values of:

0 for things that don’t have names.
should be IDENTIFIER NODE for RECORD TYPEs UNION TYPEs and

ENUM TYPEs.
TYPE DECL for RECORD TYPEs, UNION TYPEs and ENUM TYPEs, but

shouldn’t be.
TYPE DECL for typedefs, unsure why.

What things can one use this on:

TYPE DECLs
RECORD TYPEs
UNION TYPEs
ENUM TYPEs

History:

It currently points to the TYPE DECL for RECORD TYPEs, UNION TYPEs
and ENUM TYPEs, but it should be history soon.

TYPE_METHODS

Synonym for CLASSTYPE_METHOD_VEC. Chained together with TREE_CHAIN.
dbxout.c uses this to get at the methods of a class.

TYPE_DECL

Used to represent typedefs, and used to represent bindings layers.

Components:

DECL NAME is the name of the typedef. For example, foo would be found in
the DECL NAME slot when typedef int foo; is seen.

DECL SOURCE LINE identifies what source line number in the source file the
declaration was found at. A value of 0 indicates that this TYPE DECL is just
an internal binding layer marker, and does not correspond to a user suppiled
typedef.

DECL SOURCE FILE

TYPE_FIELDS

A linked list (via TREE_CHAIN) of member types of a class. The list can contain
TYPE_DECLs, but there can also be other things in the list apparently. See also
CLASSTYPE_TAGS.

TYPE_VIRTUAL_P

A flag used on a FIELD_DECL or a VAR_DECL, indicates it is a virtual function
table or a pointer to one. When used on a FUNCTION_DECL, indicates that it is a
virtual function. When used on an IDENTIFIER_NODE, indicates that a function
with this same name exists and has been declared virtual.

When used on types, it indicates that the type has virtual functions, or is
derived from one that does.

Not sure if the above about virtual function tables is still true. See also info on
DECL_VIRTUAL_P.

What things can this be used on:

FIELD DECLs, VAR DECLs, FUNCTION DECLs, IDENTIFIER NODEs

VF_BASETYPE_VALUE

Get the associated type from the binfo that caused the given vfield to exist.
This is the least derived class (the most parent class) that needed a virtual
function table. It is probably the case that all uses of this field are misguided,
but they need to be examined on a case-by-case basis. See history for more
information on why the previous statement was made.

Set at finish_base_struct time.

What things can this be used on:

TREE LISTs that are vfields

History:

This field was used to determine if a virtual function table’s slot should be filled
in with a certain virtual function, by checking to see if the type returned by
VF BASETYPE VALUE was a parent of the context in which the old virtual
function existed. This incorrectly assumes that a given type could not appear
as a parent twice in a given inheritance lattice. For single inheritance, this would
in fact work, because a type could not possibly appear more than once in an
inheritance lattice, but with multiple inheritance, a type can appear more than
once.

VF_BINFO_VALUE

Identifies the binfo that caused this vfield to exist. If this vfield is from the first
direct base class that has a virtual function table, then VF BINFO VALUE is
NULL TREE, otherwise it will be the binfo of the direct base where the vfield
came from. Can use TREE_VIA_VIRTUAL on result to find out if it is a virtual
base class. Related to the binfo found by

get_binfo (VF_BASETYPE_VALUE (vfield), t, 0)

where ‘t’ is the type that has the given vfield.

get_binfo (VF_BASETYPE_VALUE (vfield), t, 0)

will return the binfo for the the given vfield.

May or may not be set at modify_vtable_entries time. Set at finish_base_
struct time.

What things can this be used on:

TREE LISTs that are vfields

VF_DERIVED_VALUE

Identifies the type of the most derived class of the vfield, excluding the the class
this vfield is for.

Set at finish_base_struct time.

What things can this be used on:

TREE LISTs that are vfields

VF_NORMAL_VALUE

Identifies the type of the most derived class of the vfield, including the class
this vfield is for.

Set at finish_base_struct time.

What things can this be used on:

TREE LISTs that are vfields

WRITABLE_VTABLES

This is a option that can be defined when building the compiler, that will cause
the compiler to output vtables into the data segment so that the vtables maybe
written. This is undefined by default, because normally the vtables should be
unwritable. People that implement object I/O facilities may, or people that
want to change the dynamic type of objects may want to have the vtables
writable. Another way of achieving this would be to make a copy of the vtable
into writable memory, but the drawback there is that that method only changes
the type for one object.

1.6 Typical Behavior

Whenever seemingly normal code fails with errors like syntax error at ‘\{’, it’s highly
likely that grokdeclarator is returning a NULL TREE for whatever reason.

1.7 Coding Conventions

It should never be that case that trees are modified in-place by the back-end, unless it is
guaranteed that the semantics are the same no matter how shared the tree structure is.
fold-const.c still has some cases where this is not true, but rms hypothesizes that this
will never be a problem.

1.8 Templates

g++ uses the simple approach to instantiating templates: it blindly generates the code for
each instantiation as needed. For class templates, g++ pushes the template parameters into
the namespace for the duration of the instantiation; for function templates, it’s a simple
search and replace.

This approach does not support any of the template definition-time error checking that
is being bandied about by X3J16. It makes no attempt to deal with name binding in a
consistent way.

Instantiation of a class template is triggered by the use of a template class anywhere but
in a straight declaration like class A<int>. This is wrong; in fact, it should not be triggered
by typedefs or declarations of pointers. Now that explicit instantiation is supported, this
misfeature is not necessary.

Important functions:

instantiate_class_template

This function

1.9 Access Control

The function compute access returns one of three values:

access_public

means that the field can be accessed by the current lexical scope.

access_protected

means that the field cannot be accessed by the current lexical scope because it
is protected.

access_private

means that the field cannot be accessed by the current lexical scope because it
is private.

DECL ACCESS is used for access declarations; alter access creates a list of types and
accesses for a given decl.

Formerly, DECL {PUBLIC,PROTECTED,PRIVATE} corresponded to the return codes
of compute access and were used as a cache for compute access. Now they are not used at
all.

TREE PROTECTED and TREE PRIVATE are used to record the access levels granted
by the containing class. BEWARE: TREE PUBLIC means something completely unrelated
to access control!

1.10 Error Reporting

The C++ front-end uses a call-back mechanism to allow functions to print out reasonable
strings for types and functions without putting extra logic in the functions where errors are
found. The interface is through the cp_error function (or cp_warning, etc.). The syntax
is exactly like that of error, except that a few more conversions are supported:

• %C indicates a value of ‘enum tree code’.

• %D indicates a * DECL node.

• %E indicates a * EXPR node.

• %L indicates a value of ‘enum languages’.

• %P indicates the name of a parameter (i.e. "this", "1", "2", ...)

• %T indicates a * TYPE node.

• %O indicates the name of an operator (MODIFY EXPR -> "operator =").

There is some overlap between these; for instance, any of the node options can be used
for printing an identifier (though only %D tries to decipher function names).

For a more verbose message (class foo as opposed to just foo, including the return
type for functions), use %#c. To have the line number on the error message indicate the line
of the DECL, use cp_error_at and its ilk; to indicate which argument you want, use %+D,
or it will default to the first.

1.11 Parser

Some comments on the parser:

The after_type_declarator / notype_declarator hack is necessary in order to allow
redeclarations of TYPENAMEs, for instance

typedef int foo;

class A {

char *foo;

};

In the above, the first foo is parsed as a notype_declarator, and the second as a
after_type_declarator.

Ambiguities:

There are currently four reduce/reduce ambiguities in the parser. They are:

1) Between template_parm and named_class_head_sans_basetype, for the tokens
aggr identifier. This situation occurs in code looking like

template <class T> class A { };

It is ambiguous whether class T should be parsed as the declaration of a template type
parameter named T or an unnamed constant parameter of type class T. Section 14.6,
paragraph 3 of the January ’94 working paper states that the first interpretation is the
correct one. This ambiguity results in two reduce/reduce conflicts.

2) Between primary and type_id for code like ‘int()’ in places where both can be
accepted, such as the argument to sizeof. Section 8.1 of the pre-San Diego working paper
specifies that these ambiguous constructs will be interpreted as typenames. This ambiguity
results in six reduce/reduce conflicts between ‘absdcl’ and ‘functional_cast’.

3) Between functional_cast and complex_direct_notype_declarator, for various
token strings. This situation occurs in code looking like

int (*a);

This code is ambiguous; it could be a declaration of the variable ‘a’ as a pointer to
‘int’, or it could be a functional cast of ‘*a’ to ‘int’. Section 6.8 specifies that the
former interpretation is correct. This ambiguity results in 7 reduce/reduce conflicts.
Another aspect of this ambiguity is code like ’int (x[2]);’, which is resolved at the
’[’ and accounts for 6 reduce/reduce conflicts between ‘direct_notype_declarator’
and ‘primary’/‘overqualified_id’. Finally, there are 4 r/r conflicts between
‘expr_or_declarator’ and ‘primary’ over code like ’int (a);’, which could probably be
resolved but would also probably be more trouble than it’s worth. In all, this situation
accounts for 17 conflicts. Ack!

The second case above is responsible for the failure to parse ’LinppFile ppfile (String
(argv[1]), &outs, argc, argv);’ (from Rogue Wave Math.h++) as an object declaration, and
must be fixed so that it does not resolve until later.

4) Indirectly between after_type_declarator and parm, for type names. This occurs
in (as one example) code like

typedef int foo, bar;

class A {

foo (bar);

};

What is bar inside the class definition? We currently interpret it as a parm, as does
Cfront, but IBM xlC interprets it as an after_type_declarator. I believe that xlC is
correct, in light of 7.1p2, which says "The longest sequence of decl-specifiers that could
possibly be a type name is taken as the decl-specifier-seq of a declaration." However, it
seems clear that this rule must be violated in the case of constructors. This ambiguity
accounts for 8 conflicts.

Unlike the others, this ambiguity is not recognized by the Working Paper.

1.12 Copying Objects

The generated copy assignment operator in g++ does not currently do the right thing for
multiple inheritance involving virtual bases; it just calls the copy assignment operators for
its direct bases. What it should probably do is:

1) Split up the copy assignment operator for all classes that have vbases into "copy my
vbases" and "copy everything else" parts. Or do the trickiness that the constructors do to
ensure that vbases don’t get initialized by intermediate bases.

2) Wander through the class lattice, find all vbases for which no intermediate base has
a user-defined copy assignment operator, and call their "copy everything else" routines. If
not all of my vbases satisfy this criterion, warn, because this may be surprising behavior.

3) Call the "copy everything else" routine for my direct bases.

If we only have one direct base, we can just foist everything off onto them.

This issue is currently under discussion in the core reflector (2/28/94).

1.13 Exception Handling

Note, exception handling in g++ is still under development.

This section describes the mapping of C++ exceptions in the C++ front-end, into the
back-end exception handling framework.

The basic mechanism of exception handling in the back-end is unwind-protect a la elisp.
This is a general, robust, and language independent representation for exceptions.

The C++ front-end exceptions are mapping into the unwind-protect semantics by the
C++ front-end. The mapping is describe below.

Objects with RTTI support should use the RTTI information to do mapping and check-
ing. Objects without RTTI, like int and const char *, have to use another means of matching.
Currently we use the normal mangling used in building functions names. Int’s are "i", const
char * is PCc, etc...

Unfortunately, the standard allows standard type conversions on throw parameters so
they can match catch handlers. This means we need a mechanism to handle type conversion
at run time, ICK. I read this part again, and it appears that we only have to be able to do
a few of the conversions at run time, so we should be ok.

In C++, all cleanups should be protected by exception regions. The region starts just
after the reason why the cleanup is created has ended. For example, with an automatic
variable, that has a constructor, it would be right after the constructor is run. The region
ends just before the finalization is expanded. Since the backend may expand the cleanup
multiple times along different paths, once for normal end of the region, once for non-local
gotos, once for returns, etc, the backend must take special care to protect the finalization
expansion, if the expansion is for any other reason than normal region end, and it is ‘inline’
(it is inside the exception region). The backend can either choose to move them out of line,
or it can created an exception region over the finalization to protect it, and in the handler
associated with it, it would not run the finalization as it otherwise would have, but rather
just rethrow to the outer handler, careful to skip the normal handler for the original region.

In Ada, they will use the more runtime intensive approach of having fewer regions, but
at the cost of additional work at run time, to keep a list of things that need cleanups. When
a variable has finished construction, they add the cleanup to the list, when the come to the
end of the lifetime of the variable, the run the list down. If the take a hit before the section
finishes normally, they examine the list for actions to perform. I hope they add this logic
into the back-end, as it would be nice to get that alternative approach in C++.

On an rs6000, xlC stores exception objects on that stack, under the try block. When is
unwinds down into a handler, the frame pointer is adjusted back to the normal value for
the frame in which the handler resides, and the stack pointer is left unchanged from the
time at which the object was throwed. This is so that there is always someplace for the
exception object, and nothing can overwrite it, once we start throwing. The only bad part,
is that the stack remains large.

Flaws in g++’s exception handling. The stack pointer is restored from stack, we want
to match rs6000, and propagate the stack pointer from time of throw, down, to the catch
place.

Only exact type matching of throw types works (references work also), catch variables
cannot be used. Only works on a Sun sparc running SunOS 4.1.x. Unwinding to outer
catch clauses works. All temps and local variables are cleaned up in all unwinded scopes.
Completed parts of partially constructed objects are not cleaned up. Don’t expect exception
handling to work right if you optimize, in fact the compiler will probably core dump. You
can only have one source file worth of exception handling code. If two EH regions are the
exact same size, the backend cannot tell which one is first. It punts by picking the last one,
if they tie. This is usually right. We really should stick in a nop, if they are the same size.

If we fall off the end of a series of catch blocks, we return to the flow of control in a
normal fasion. But this is wrong, we should rethrow.

When we invoke the copy constructor for an exception object because it is passed by
value, and if we take a hit (exception) inside the copy constructor someplace, where do we
go? I have tentatively choosen to not catch throws by the outer block at the same unwind
level, if one exists, but rather to allow the frame to unwind into the next series of handlers,
if any. If this is the wrong way to do it, we will need to protect the rest of the handler
in some fashion. Maybe just changing the handler’s handler to protect the whole series of
handlers is the right way to go.

The EH object is copied like it should be, if it is passed by value, otherwise we get a
reference directly to it.

EH objects make it through unwinding, but are subject to being overwritten as they are
still past the top of stack.

Exceptions in catch handlers now go to outer block.

1.14 Free Store

operator new [] adds a magic cookie to the beginning of arrays for which the number of
elements will be needed by operator delete []. These are arrays of objects with destructors
and arrays of objects that define operator delete [] with the optional size t argument. This
cookie can be examined from a program as follows:

typedef unsigned long size_t;

extern "C" int printf (const char *, ...);

size_t nelts (void *p)

{

struct cookie {

size_t nelts __attribute__ ((aligned (sizeof (double))));

};

cookie *cp = (cookie *)p;

--cp;

return cp->nelts;

}

struct A {

~A() { }

};

main()

{

A *ap = new A[3];

printf ("%ld\n", nelts (ap));

}

1.15 Concept Index

A
access checking . 1

M
multiple inheritance . 1

P
parse errors . 13
pointers to members . 1
pushdecl class level . 1

V
volatile . 1

